






After the dramatic success by CYMMET and IRRI in 1970s in Latin America and Asia, various HYVs were available in Sub Sahara Africa during last 40 years, 1970-2008.

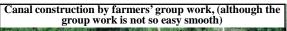
However, the green revolution is yet realized in Sub Sahara Africa. Why ?



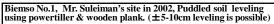










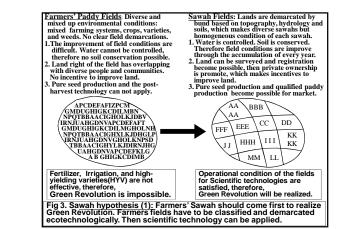



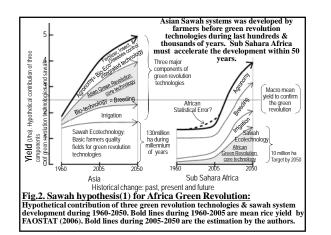




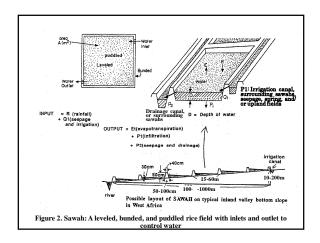


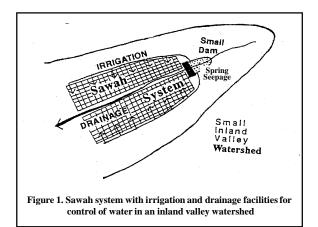


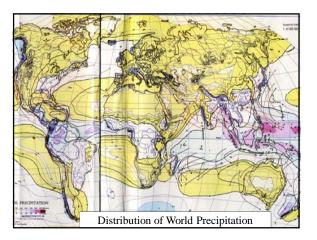



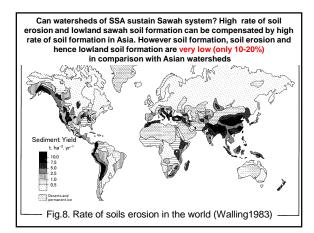



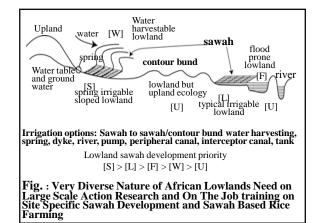




Once Sawah system was developed, yield can reach at least 4t/ha. If improved rice agronomy can practice, such as intermittent irrigation, or others like System Rice Intensification (SRI), yield can reach to 10t/ha (CRI sawah team, 2008)





| West Afr<br>concept and<br>Sawa | ica to desc<br>term to im<br>ah or SUII | ribe eco-teo<br>prove farm<br>DEN (in Jap | ers'rice fields,<br>anese) |
|---------------------------------|-----------------------------------------|-------------------------------------------|----------------------------|
| Suiden(Japa                     | nese) = <mark>SA</mark>                 | WAH (Malay-                               | Indonesian)                |
|                                 | English                                 | Indonesian                                | Chinese(漢字)                |
| Plant<br>Biotechnology          | Rice                                    | Nasi                                      | 米, 飯, 稲                    |
|                                 | Paddy <                                 | Padi                                      | 稲, 籾                       |
| Environment<br>Ecotechnlogy     | (Paddy) ?                               | Sawah                                     | 水田                         |





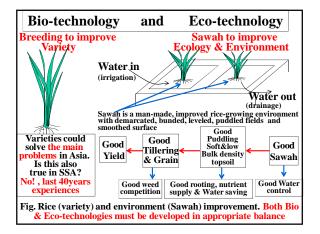






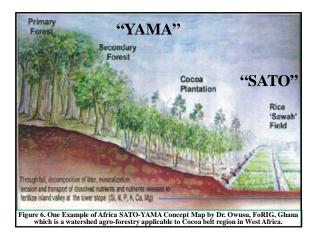
| Table 1 Distribution of lowlands and potential irrigated sawah | 1 |
|----------------------------------------------------------------|---|
| in SSA (Hekstra, Andriesse, Windmeijer 1983 & 1993,            |   |
| Potential Sawah area estimate by Wakatsuki 2002)               |   |

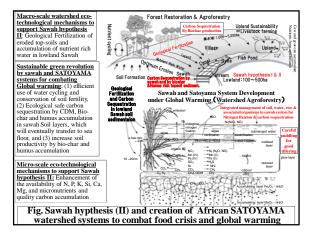
| Classification                                                                                                                                                                                                                                                                                                                                                      | Area<br>(million<br>ha) | Area          | a for potential sawah<br>development |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--------------------------------------|--|
| Coastal swamps                                                                                                                                                                                                                                                                                                                                                      | 17                      | 4-9           | millon ha (25-50%)                   |  |
| Inland basins                                                                                                                                                                                                                                                                                                                                                       | 108                     | 1-5           | million ha (1-5%)                    |  |
| Flood plains                                                                                                                                                                                                                                                                                                                                                        | 30                      | <b>4</b> 8-15 | million ha(25-50%)                   |  |
| Inland valleys                                                                                                                                                                                                                                                                                                                                                      | 85                      | 9-20          | million ha(10-25%)                   |  |
| Although priority target is the inland valley because of easier<br>water control, some flood plains can be high priority, such as<br>Sokoto & Kebbi where personal pump irrigated sawah is efficien<br>Total maximum sawah area : 20million ha (Estimated sawah area came from th<br>relative amount of water cycle in Monsoon Asia, which has 130 million ha sawal |                         |               |                                      |  |


| Multi Functionality of Sawah Systems                                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I. Intensive, diverse and sustainable nature of productivity                                                                                        |  |  |
| (1) Weed control                                                                                                                                    |  |  |
| (2) Nitrogen fixation ecosystems: 20 to 200kgN/ha/year                                                                                              |  |  |
| (3) To increase Phosphate availability: concerted effect on N fixation                                                                              |  |  |
| (4) pH neutralizng ecosystems: to increase micro nutrient availability                                                                              |  |  |
| (5) Geological & irrigation fertilization: water, nutrients and topsoil from upland                                                                 |  |  |
| (6) Various sawah based farming systems.                                                                                                            |  |  |
| (7) Fish and rice, Goose and sawah, Birds and sawah, Forest and Sawah                                                                               |  |  |
| II. To combat Global warming and other environmental problems                                                                                       |  |  |
| (1) Carbon sequestration through control of oxygen supply. Methane emission<br>under submerged condition. Nitrous oxide emission under aerobic rice |  |  |
| (2) Watershed agroforestry, SATOYAMA, to generate forest at upland                                                                                  |  |  |
| (3) Sawah systems as to control flooding & soil erosion and to generate electricity                                                                 |  |  |
| (4) Denitrification of nitrate polluted water                                                                                                       |  |  |
| III. To create cultural landscape and social collaboration                                                                                          |  |  |
| (1) Terraced sawah as beautiful cultural landscape                                                                                                  |  |  |
| (2) Fare water distribution systems for collaboration and fare society                                                                              |  |  |

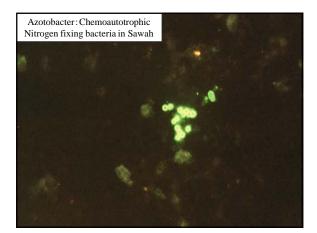
Comparison between Biotechnology and Sawah Ecotechnology Options for Rice Production

- (1) Water shortage: Genes for deep rooting, C4-nature, and Osmotic regulation. Eco-technology of Sawah based soil and water management, bunding, leveling, puddling, and surface smoothing with various irrigations, Aerobic rice, System rice intensification
- (2) Poor nutrition, acidity and alkalinity:Gene of Phosphate and micronutrient transporter. Eco-technology of Sawah based N fixation, increase P availability and micro- as well as macronutrient. Geological fertilization and watershed agroforestry(SATOYAMA systems), organic matter and fertilization. Bird feculent are rich in P.
- (3) Weed control: Gene of weed competition, rapid growth. <u>Eco-technology</u> of Sawah based weed management through water control and tans-planting. Leveling quality and surface smoothing of sawah are important. Duck and rice farming.
- (4) Pest and disease control: Various Resistance genes. Ecotechnology of Sawah based silica and other nutrients supply to enhance immune mechanisms of rice. Mixed cropping.
- (5) Food quality: Vitamine rice gene. <u>Sawah based nutrition control.</u> <u>Fish, duck and rice in sawah systems</u>





| Table Mean gain yield of<br>(LIL) and high input leve<br>2005)                                                                                                                                                                                                                                                                                                                                          | ls (HIL),                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                         | Ghana (                                                                                                                                                                                                                                            | Ofori &                                                                                                                    | Wakatsı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıki,2005)                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry No. Cultivar                                                                                                                                                                                                                                                                                                                                                                                      | Irrigate                                                                                                                                                      | 1 Sawah                                                                                                                                                                                                                                                                                                                 | Rainfed                                                                                                                                                                                                                                            | l sawah                                                                                                                    | Upland<br>HIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | like fields                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                         | (t/l                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                         | (t/l                                                                                                                                                                                                                                               |                                                                                                                            | (t/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |
| 1 WAB   1 WAB   2 PSBRC34   3 PSBRC34   4 PSBRC34   5 PSBRC34   4 PSBRC34   5 PSBRC34   6 BOAK189   7 PSBRC34   6 BOAK189   7 PSBRC34   6 BOAK189   7 PSBRC34   11 IR54903   12 PSBRC34   11 IR54903   12 PSBRC34   14 CT9037-P   16 WTA4   19 WTA6   212 WTA122   23 WTA9   212 WTA122   23 Mean (n=23)   Mean (n= | 4.6<br>4.0<br>7.7<br>8.0<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>8.2<br>7.6<br>8.2<br>7.6<br>8.2<br>7.6<br>7.5<br>7.6<br>7.5<br>7.6<br>7.5 | 2.9<br>2.8<br>3.5<br>3.3<br>3.3<br>3.3<br>4.2<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>3.5<br>3.7<br>3.4<br>4.0<br>4.0<br>4.0<br>3.5<br>4.1<br>4.0<br>4.0<br>3.5<br>3.5<br>3.5<br>3.5<br>3.3<br>3.4<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5 | 28<br>29<br>30<br>38<br>37<br>44<br>40<br>40<br>42<br>40<br>40<br>38<br>37<br>40<br>42<br>40<br>38<br>37<br>40<br>42<br>40<br>38<br>33<br>33<br>33<br>33<br>33<br>33<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 | 1.6<br>1.3<br>2.1<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7 | 2.1<br>1.4<br>2.0<br>1.7<br>1.8<br>1.4<br>1.4<br>1.8<br>2.3<br>1.8<br>1.4<br>1.9<br>2.0<br>1.2<br>0.9<br>1.2<br>0.9<br>1.3<br>1.5<br>1.4<br>1.9<br>2.0<br>1.3<br>1.5<br>1.4<br>1.4<br>1.9<br>2.0<br>1.9<br>2.0<br>1.2<br>0.1<br>1.8<br>1.8<br>1.4<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.3<br>2.0<br>1.9<br>2.0<br>1.3<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>1.9<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | 0.6<br>0.5<br>0.4<br>0.4<br>0.4<br>0.5<br>0.5<br>0.5<br>0.3<br>0.4<br>0.5<br>0.3<br>0.4<br>0.5<br>0.3<br>0.4<br>0.5<br>0.3<br>0.4<br>0.5<br>0.3<br>0.4<br>0.4<br>0.5<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.5<br>0.4<br>0.4<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 |
| Range                                                                                                                                                                                                                                                                                                                                                                                                   | (4.0-8.2)                                                                                                                                                     | (2.8-4.4)                                                                                                                                                                                                                                                                                                               | (2.8-4.5)                                                                                                                                                                                                                                          | (1.3-2.8)                                                                                                                  | (0.9-2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.3-0.6)                                                                                                                                                                                                                                                                                                 |
| SD                                                                                                                                                                                                                                                                                                                                                                                                      | 1.51                                                                                                                                                          | 0.81                                                                                                                                                                                                                                                                                                                    | 0.81                                                                                                                                                                                                                                               | 0.45                                                                                                                       | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                      |
















| 1ha sawah is equivalent to 10-15ha of upland |             |                |  |  |
|----------------------------------------------|-------------|----------------|--|--|
|                                              | Upland      | Lowland(Sawah) |  |  |
| Area (%)                                     | 95 %        | 5 %            |  |  |
| Productivity (t/ha)                          | 1-3(1 ≦ **) | 3-6 (2**)      |  |  |
| Required area for sustainable1 ha cropping*  | 5 ha        | : 1 ha         |  |  |

